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Abstract Introduction: Biomarker progressions explain higher variability in cognitive decline than baseline
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values alone. This study examines progressions of established biomarkers along with a novel marker
in a longitudinal cognitive decline.
Methods: A total of 215 subjects were used with a diagnosis of normal, mild cognitive impairment
(MCI) or Alzheimer’s disease (AD) at baseline. We calculated standardized biomarker progression
rates and used them as predictors of outcome within 5 years.
Results: Early cognitive declines were more strongly explained by fluorodeoxyglucose-positron
emission tomography, precuneus and medial temporal cortical thickness, and the complex instru-
mental activities of daily living (iADL) marker progressions. Using Cox proportional hazards model,
we found that these progressions were a significant risk factor for conversion from both MCI to AD
(adjusted hazard ratio 1.45; 95% confidence interval 1.20–1.93; P 5 1.23 ! 1025) and cognitively
normal to MCI (adjusted hazard ratio 1.76; 95% confidence interval 1.32–2.34; P 5 1.55 ! 1025).
Discussion: Compared with standard biological biomarkers, complex functional iADL markers
could also provide predictive information for cognitive decline during the presymptomatic stage.
This has important implications for clinical trials focusing on prevention in asymptomatic individuals.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Accurate and early Alzheimer’s disease (AD) staging
and differential diagnosis possess a pressing modern chal-
lenge, partly fueled by recent AD disease-modifying treat-
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ment paradigms that only work if applied during the
presymptomatic phase [1]. Accurate and earlier diagnosis
of patient states is difficult, partly because, despite the
popularity of the AD cascade model [2], amyloid and
tau-based, pathologic progressions, such as neuritic pla-
ques and neurofibrillary pathology, are interacting in a
much more complex way than previously thought [3].
The complexity of the AD pathologic events is now
accepted to occur years before symptomatic onset and it
challenges current knowledge of the underlying
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pathologic pathways [4]. Determining new diagnostic
criteria that incorporate biomarkers to construct models
of disease progression enabled the mechanism to stage
and stratify patients during the presymptomatic phase
[5]. For example, the revised National Institute on Aging
-Alzheimer’s Association (NIA-AA) criteria [6] helped
reduce heterogeneity in trial groups, monitor treatment
outcomes, and match persons to presumptive treatments.
However, despite the deeper understanding and availabil-
ity of AD in vivo biomarkers, the evidence base for this is
relatively limited [7]. A major challenge is to construct
models of disease progression that estimate biomarker
ordering and dynamics directly from real-world data sets
enabling quantitative evaluation of the disease since its
earliest stages [8]. At the presymptomatic stage, this
would mean to allow the capturing of healthy individuals
at risk of developing AD.

Hypothetical models of AD progression have been
proposed that describe presymptomatic sequences in
which different biomarkers become abnormal [9]. The
most well validated of these models generally propose
that cerebrospinal fluid (CSF) amyloid pathology and
amyloid positron emission tomography (PET) abnormal-
ities precede CSF phosphorylated and total tau (t-tau),
fluorodeoxyglucose-positron emission tomography
(FDG-PET) hypometabolism, and measures of brain
metabolism precede regional neurodegeneration, e.g., vol-
ume and atrophy rate markers derived from structural
magnetic resonance (MRI), which all occur before a sig-
nificant clinical change in cognitive performance test
scores [10]. When attempting to validate the ordering of
these biomarkers, e.g., Brickman et al. [11], CSF brain
amyloidosis, neuronal degeneration, namely elevated
CSF tau protein, decreased cortical FDG-PET, and medial
temporal atrophy on MRI, the results are always depen-
dent on defining abnormal biomarker levels and choosing
cut points, which are not easy to establish. Others are also
attempting to determine biomarker ordering using a priori
staging based on clinical diagnosis and not informed
directly by measured data sets [12]. Such attempts can
only provide ordering of a small number of biomarkers
and limit the temporal resolution of such models to crude
stages (e.g., normal, early mild cognitive impairment
[MCI], late MCI, or AD). For instance, empirically
derived MCI stages or subtypes demonstrate heterogene-
ity that is not captured by conventional criteria in MCI
cognitive profiles. Conventional profiles are susceptible
to false-positive errors, which implicates the result of
prior MCI studies and may be diluting important
biomarker relationships [13]. Moreover, because the
way a biomarker is measured can make a difference in
diagnostic accuracy, harmonized protocols are still
needed [14–16].

In the context mentioned previously, a recently intro-
duced, probabilistic, event-based model (EBM) provided a
generative model of AD progression, as a sequence of
events, at which individual biomarkers become abnormal.
Recent work [17] demonstrated the EBM’s consistent ability
to learn normal and abnormal distributions of presymptom-
atic AD biomarker values from data, without requiring any a
priori staging or cut points. Researchers might be using such
an approach to stage subjects retrospectively and follow a
large elderly cohort over a long period of time. For example,
Rembach et al. [18] showed such an analysis in plasma am-
yloid beta and Lim et al. [19] estimated the rate of change of
prodromal AD biomarkers and obtained an average cogni-
tive trajectory over time. Similarly, Tarnanas et al. [20]
showed a 2-year rate of change but with the introduction
of a novel computer-based marker along with MRI and
event-related potential biomarkers in subjects with MCI.
However, although a promising approach, one issue not sys-
tematically examined previously is whether biomarker
changes from baseline value to end point or biomarker
changes over all the intermediate time points (referred in
this study as biomarker progressions) were more strongly
associated with cognitive declines. A recent study [21]
examined the relative ability of baseline values versus
biomarker progressions at each stage of AD in predicting
cognitive declines and proved that progressions explained
higher variability in cognitive declines than values at the
baseline. This finding provides an improved model of the
longitudinal, nonlinear association between biomarker and
regional atrophy progressions and shows that future clinical
trials would benefit by identifying such biomarker progres-
sions most strongly associated with cognitive and functional
declines at later stages [22].

Given the amount of recent accumulated knowledge on
normal and abnormal function of biomarker progressions,
it is not surprising that computer-processable disease models
are taking the lead in drug and biomarker discovery efforts
[23]. As an illustration [24], proposed two computer-
processable cause-and-effect models are based on the Bio-
logical Expression Language (http://www.openbel.org/),
which support the automatic reasoning of interlinked mole-
cules, and normal and abnormal biological processes. They
argued that computer-processable disease models should be
based on cause-and-effect regulatory effects that link up-
stream causal entities to downstream bioclinical effects. In
agreement with that group, we believe that computer-
processable disease model approaches would be enhanced
with the addition of quantitative, real-life, complex activities
of daily living, a computerized cognitive performance data
set, such as our complex instrumental activities of daily
living (iADL) marker with day-out task (DOT) and dual-
task walk (NAV) profiles.

The aim of this study was to examine the relative ability
of individual biomarker progressions in relation to our com-
plex iADL marker of longitudinal cognitive and functional
declines. We used 5-year longitudinal data at each stage of
AD to assess which progressions are associated with such
declines. To conduct a fair comparison, analogous to a recent
study [21], we standardized all biomarkers and presented
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clinical values corresponding to each standard deviation. We
hypothesized that the fine-grained staging potential of our
complex iADL marker could improve clinical trial designs
by predicting (1) conversion from cognitively normal (CN-
stable) to MCI (CN-converters) and (2) conversion from
MCI (MCI-stable) to AD (MCI-converters), allowing the
recruitment of high-risk populations with higher accuracy.
2. Methods

2.1. Data source

Data used in the preparation of this article were obtained
from two independent data sets: the Greek Association for
Alzheimer’s Disease and Related Disorders outpatient mem-
ory clinic, belonging to the Third Neurological Clinic of the
Aristotle University of Thessaloniki and Virtual Reality
Medical Center, San Diego. The study was approved by
the Institutional Ethics Review Board at each participating
institution, and written consent was obtained from all partic-
ipants, in accordance with the Declaration of Helsinki.

We downloaded data from the initiative’s database on
March 5, 2015, and included the following for the current
analysis: CSF, FDG-PET, and amyloid PET biomarker and
MRI scans at baseline and follow-up that met global quality
control criteria. Finally, we performed a binary classification
of cognitively normal subjects into those who have a stable
diagnosis of cognitively normal (CN-stable) and those who
convert to MCI (CN-converters). The same procedure was
used for MCI subjects into those who have a stable diagnosis
of MCI (MCI-stable) and those who convert to AD (MCI-
converters). Stable subjects were defined as those with a
cognitively normal or MCI diagnosis who remained the
same at the end of the 12-, 24-, 36-, 48-, or 60-month
follow-up.

2.2. Participants

A total of 350 people were enrolled from which 65 were
excluded due to incident vascular events, and 75 were not
able to complete the full duration of the study and were
considered dropouts. In the end, 215 subjects with valid
data for our variables of interest, from which 71 with normal
cognition, 61 withMCI, and 83 with AD using baseline diag-
nosis, were used in this study. Subjects with normal cogni-
tion did not meet criteria for dementia or MCI [25,26], had
a mini-mental state examination (MMSE) score between
24 and 30, and a global clinical dementia rating (CDR)
[27] score of 0. MCI subjects had a CDR of 0.5, MMSE
score between 24 and 30, evidence of objective memory
loss or a memory complaint (as measured by education
adjusted scores on the Wechsler Memory Scale Logical
Memory II), absence of significant other cognitive domains
impairment, essentially preserved activities of daily living,
and absence of dementia. Mildly demented AD participants
had MMSE scores between 20 and 26, global CDR scores of
0.5 or 1.0, and met the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association criteria for prob-
able AD [28]. To minimize the influence of vascular pathol-
ogy, we used the Hachinski ischemic index and excluded
participants with significant vascular disease burden at study
baseline. Baseline and slopes of progression of the following
biomarkers were examined: MRI total brain volumes, hippo-
campal volumes, ventricular volumes, white matter hyperin-
tensity volumes, CSF t-tau protein and amyloid beta (Ab)42
levels, cortical thickness of selected regions (precuneus and
medial temporal cortical thickness—the latter being the
summary variable obtained by adding averaged means for
left and right entorhinal, perirhinal, and posterior parahippo-
campal cortical region thicknesses [29]), and FDG-PET. The
CSF t-tau and phosphorylated tau data were log transformed
to improve normality. Group biomarker characteristics are
summarized in Table 1.
2.3. Neuropsychological examination

All the subjects were assessed with a standardized neuro-
psychological test battery. MMSE was used to assess global
cognitive functioning. Trajectories of memory declines
were examined with Alzheimer’s Disease Neuroimaging
Initiative-memory (ADNI-Mem), which was computed by
the use of different word lists in the Rey auditory verbal
learning test, the Alzheimer’s Disease Assessment Scale-
cognitive subscale (ADAS-Cog), and by Logical Memory
I data, similar to Crane et al. 2012 [30]. Alzheimer’s Disease
Neuroimaging Initiative-executive functioning (ADNI-Exe)
was used to measure executive decline trajectories and
included category fluency (animals), category fluency (veg-
etables), trails A and B, digit span backward,Wechsler Adult
Intelligence Scale-Revised digit symbol substitution, and
five clock drawing items (circle, symbol, numbers, hands,
and time), similar to Crane et al. 2008 [31]. Considerations
for compiling ADNI-Mem and ADNI-Exe included the
following: (1) coverage of the domains of interest (memory,
executive functions, attention, and visuospatial abilities); (2)
ability to measure change over a 2–5 year period; (3)
compatibility with previous ADNI biomarker progression
studies; (4) being efficient and practical, with low demands
for use in our multi-site setting; and (5) avoid ceiling or floor
effects. The ADNI-Mem and ADNI-Exe scores are psycho-
metrically optimized, robust, previously validated compos-
ite scores of memory and executive function, respectively,
with high external validity [32].
2.4. DOT and NAV marker tasks

The complex iADL marker of this study was a complex
activity of daily living, which previous research showed as
a valid and reliable early indicator of cognitive decline in
elderly persons [20,33]. In summary, complex iADL is a
set of naturalistic tasks that required coordination of
information by eliciting medium-to-high cognitive control,



Table 1

Clinical characteristics at baseline of the subjects (means with SDs)

Characteristics

Normal at baseline MCI at baseline AD at baseline

Number of

assessments

available,

mean (range)

Baseline

values,

mean (SD)

Number of

assessments

available,

mean (range)

Baseline

values,

mean (SD)

Number of

assessments

available,

mean (range)

Baseline

values,

mean (SD)

n 71 61 83

Age N/A 72.0 (9.3) N/A 72.2 (8.4) N/A 74.7 (9.8)

Years of education N/A 14.1 (4.9) N/A 13.6 (5.4) N/A 14.4 (4.6)

Female (%) N/A 53.0 N/A 55.0 N/A 56.0

APOE ε4 (ε4 allele present) (%) N/A 27.5 N/A 56.2 N/A 71.3

CSF t-tau (pg/mL) 4.2 (1–6) 68.2 (32.2) 4.3 (1–6) 103.1 (50.5) 4.2 (1–6) 123.2 (50.1)

CSF Ab42 (pg/mL) 4.2 (1–6) 211.1 (52.5) 4.3 (1–6) 164 (56.9) 4.2 (1–6) 141.8 (40.3)

FDG-PET 4.2 (1–6) 1.3 (0.1) 4.2 (1–6) 1.2 (0.1) 4.3 (1–6) 1.1 (0.1)

Brain volume (cm3)

WMH 3.4 (1–6) 8.1E24 (3E23) 3.6 (1–6) 8.3E24 (3E23) 4.3 (1–6) 3.3E23 (3E23)

Hippocampal 4.2 (1–6) 3.5 (0.5) 4.3 (1–6) 2.8 (0.5) 4.3 (1–6) 2.6 (0.5)

Ventricular 4.2 (1–6) 17.6 (9.2) 4.3 (1–6) 19.1 (9.8) 4.3 (1–6) 23.1 (10.9)

Total brain 4.2 (1–6) 1072.4 (110.6) 4.3 (1–6) 1053.3 (117.8) 4.3 (1–6) 998.3 (120.0)

WMH/ICV 3.8 (1–6) 6E25% (1.6E24%) 3.6 (1–6) 6E25% (1.7E24%) 4.3 (1–6) 7E25% (1.6E24%)

Hippocampal/ICV 4.2 (1–6) 0.2% (0.03%) 4.3 (1–6) 0.2% (0.03%) 4.3 (1–6) 0.2% (0.03%)

Ventricular/ICV 4.2 (1–6) 1.2% (0.5%) 4.3 (1–6) 1.4% (0.6%) 4.3 (1–6) 1.6% (0.8%)

Total brain/ICV 4.2 (1–6) 69.2% (4.1%) 4.3 (1–6) 66.9% (4.3%) 4.3 (1–6) 66.6% (4.2%)

Thickness (mm)

Precuneus thickness 4.2 (1–6) 2.1 (0.2) 4.3 (1–6) 2.0 (0.2) 4.3 (1–6) 2.0 (0.3)

Medial temporal thickness* 4.2 (1–6) 5.9 (0.5) 4.3 (1–6) 5.5 (0.7) 4.3 (1–6) 4.9 (0.7)

Abbreviations: SD, standard deviations; MCI, mild cognitive impairment; AD, Alzheimer’s disease; N/A, not applicable; APOE, apolipoprotein E; CSF, ce-

rebrospinal fluid; t-tau, total tau; Ab, amyloid beta; FDG-PET, fluorodeoxyglucose-positron emission tomography; WMH, white matter hyperintensity; ICV,

intracranial volume.

*Summary variable by adding averaged means for left and right entorhinal, perirhinal, and posterior parahippocampal cortical region thickness.
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such as inhibition of external stimuli or processing speed
(e.g., reaction time at interactive events), which is believed
to be affected by aging [20] (Appendix).
2.5. FDG-PET metrics and analysis

18F-FDG PET imaging was performed by the Virtual Re-
ality Medical Center, at two different sites in San Diego, CA,
USA. At both sites, the FDG-PET images were acquired us-
ing a 24 rings General Electric 3D PET/CT device (Discov-
ery ST PET with Light Speed CT), isotropic resolution of
5.99 mm; 15.7-cm axial field of view (FOV); 70-cm transax-
ial FOV. Following a previously published procedure [12],
each FDG-PET image underwent a stringent quality control
procedure to assess image quality. We used the FORE-
Iterative algorithm to reconstruct images using 48 subsets
with five iterations and xy-z filter (cutoff of 4 mm), yielding
a 128 ! 128 matrix with a pixel size of 1.95 mm
(Appendix).
2.6. MRI imaging and analysis

Details of the MRI methodology have previously been
described [20]. Cross-sectional regional measures of brain
volume for the hippocampus, entorhinal cortex, middle tem-
poral gyrus, fusiform, ventricles, and whole brain, as well as
total intracranial volume, were collected on a 1.5-T scanner
using a standardized back-to-back 3D magnetization pre-
pared rapid gradient echo (MP-RAGE) protocol: sagittal
plane, TR/TE/TI, 2400/3/1000 ms, flip angle 8�, 24-cm
FOV, 192 ! 192 in-plane matrix, 1.2-mm slice thickness.
All regional volumes were normalized by dividing by total
intracranial volume for each subject and calculated at base-
line using FreeSurfer version 4.3 (http://surfer.nmr.mgh.
harvard.edu/).
2.7. CSF biomarkers

Ab42 and t-tau protein concentrations were our CSF bio-
markers. CSF was collected in polypropylene tubes and ob-
tained by lumbar puncture performed with a 20- or 24-gauge
spinal needle between L4 and L5 or L3 and L4. The samples
were maintained at14�C and afterward, centrifuged at 2000
! g for 5 minutes, then aliquoted and stored at 280�C.
Finally, a commercially available enzyme-linked immuno-
sorbent assay (Innogenetics, Ghent, Belgium) was used to
determine Ab42 and t-tau protein concentrations.
2.8. Statistical analysis

Longitudinal trajectories of biomarkers and associa-
tion between biomarker progressions and outcome were
calculated using SPSS 23.0 for Windows (IBM Corpora-
tion, New York, USA). Analysis followed a recently
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published methodology [21] that estimates the
individual-specific slopes of each biomarker’s longitudi-
nal trajectory using mixed-effects models. Similar to
that work, we considered changes in diagnosis when sub-
jects remained in a new diagnostic category for at least
two follow-up assessments. Therefore, we used estimates
and observed baseline progressions as predictors of
cognitive decline at either ADNI-Mem or ADNI-Exe.
When applying our mixed-effects models, we controlled
for age, sex, apolipoprotein E (APOE) ε4 allele status
(ε4 present or absent), years of education, and practice
effects (Appendix).
3. Results

When generally examining each biomarker progression
across all diagnosis groups, we found that explanatory
abilities of both biomarker and our complex iADL marker
values increased with progression from normal through
MCI to AD. In addition, for both ADNI-Mem and
ADNI-Exe, differences in explanatory capacities between
biomarker progressions were larger in the MCI and AD
groups than those observed among cognitive normal sub-
jects. When examining each biomarker explanatory ability
with regard to ADNI-Mem changes, the highest portion of
variability across diagnosis groups was explained by pro-
gressions of the complex iADL marker, followed by the
FDG-PET scores and ventricular volume loss, respec-
tively. However, with regard to ADNI-Exe changes, the
order was complex iADL marker, ventricular volume
loss, and FDG-PET scores that had the highest explana-
tory ability. The ability of t-tau to predict memory or ex-
ecutive declines was either null or added further
variability to the model. Finally, progression of the CSF
Ab42 level was associated more strongly with memory
decline during the MCI stage and executive decline during
the AD stage.

In the following sections, we summarize our results per
cognitive domain (ADNI-Mem and ADNI-Exe) with tables
that show the proportion of variability in ADNI-Mem and
ADNI-Exe declines over time, explained by each
biomarker progression (Tables 2 and 3). Tables should be
read as follows: Among MCI subjects, for example, one
standard deviation larger expansion in novel computerized
marker scores is associated with a 1.40 further decline in
memory scores each year (slope effect:20.18), and marker
progression explained 76% of variability in cognitive
decline; whereas for executive scores, the novel computer-
ized marker scores explained 86.3% of variability in exec-
utive decline. When biomarker progression values, such as
the ones mentioned previously, are a positive percentage,
then the corresponding predictor explains the variation in
outcome progression, whereas when the inclusion of the
predictor adds more estimation error instead of improving
model fitting, we noted N/A.
3.1. Associations between biomarker, computerized
screening marker progressions and memory decline

When examining the memory domain for normal sub-
jects, the complex iADL marker progressions explained
variability at almost 50%, whereas FDG-PET progression,
total brain, precuneus, and medial temporal lobe thickness
progression explained variability in memory declines, but
only to a limited extent: 2%, 6%, 2.9%, and 4.67%, respec-
tively. Among MCI subjects, besides the complex iADL
marker scores, other biomarkers that explained the most
variability were progression of ventricular volumes
(43.8%), followed by shrinkage of medial temporal cortical
thickness (32.7%), whole-brain thickness (26%), and hip-
pocampal atrophy (23.4%). Among AD subjects, much
higher proportions of variability were explained by
biomarker progressions, especially novel complex iADL
marker, FDG-PET progression, and total and ventricular
brain volume atrophy.

3.2. Associations between biomarker, computerized
screening marker progressions and executive function
decline

When considering the executive domain for normal
subjects, the complex iADL marker progressions again ex-
plained more variability at 64%, whereas ventricular volume
(23.1%) and total brain thickness (13.1%) showed the high-
est association with executive function declines among
normal subjects. CSFAb42 progression, FDG-PET progres-
sion, medial temporal lobe, and precuneus thickness pro-
gression explained the variability in executive functions to
some extent (3.40%–11.70%). Among MCI subjects, as
with memory declines, the complex iADL marker had the
stronger associations with executive declines at 86.3%. Ven-
tricular volume progression and FDG-PET progression fol-
lowed in explaining the variability of executive declines
(47.5% and 37.5%, respectively). CSF Ab42 explained
slightly more variability in executive declines than in mem-
ory declines with 17.6% compared with 12.6% in memory
declines. Among AD subjects, the novel marker and ventric-
ular volume progression explained the highest variability of
executive function declines (95.7% and 83.3% respectively),
followed by FDG-PET scores progression (44.1%). As ex-
pected, neither hippocampal volume, medial temporal
lobe, and precuneus thickness progression explained the
variability of ADNI-Exe decline as much among AD sub-
jects, although they did for ADNI-Mem.

3.3. Prediction of clinical outcomes

According to our findings, the complex iADL marker ex-
plained by far the most variability among both memory and
executive declines. Because the data collected with our
“complex iADL marker” were raw discriminative values
and not binary scores, we calculated both the balanced accu-
racy (BAC) and the area under the curve (AUC). BAC was



Table 2

Proportion of decline in memory function (ADNI-Mem) explained by each biomarker progression

Biomarker

Normal group Among MCI* Among AD

% Variability

explained by

biomarkers

Standardized

effect size

% Variability

explained by

biomarkers

Standardized

effect size

% Variability

explained by

biomarkers

Standardized

effect size

Novel computerized marker (1 SD 5 1.4) 49.00 20.18 76.00 20.21 82.00 20.29

t-tau progression (1 SD 5 0.21) N/A — N/A — N/A —

Ab42 progression (1 SD 5 0.15) 1.00 0.08 12.60 20.41 10.00 20.10

FDG-PET progression (1 SD 5 0.19) 2.00 0.10 17.80 0.13 84.10 0.22

Log_WMH/ICV progression (1 SD 5 0.04) N/A — N/A — 6.10 0.10

HPCV/ICV progression (1 SD 5 0.08) N/A — 23.40 0.15 35.00 0.19

Ventricles/ICV progression (1 SD 5 0.13) N/A — 43.80 20.18 73.80 20.21

wbrain/ICV progression (1 SD 5 0.11) 6.00 0.07 26.00 0.10 30.40 0.19

pthickness progression (1 SD 5 0.10) 2.94 0.05 6.58 0.09 8.31 0.11

mtthickness progression (1 SD 5 0.13) 4.67 0.12 32.70 0.16 42.80 0.21

Abbreviations: ADNI-Mem, Alzheimer’s Disease Neuroimaging Initiative-memory; MCI, mild cognitive impairment; AD, Alzheimer’s disease; SD, stan-

dard deviation; t-tau, total tau; Ab, amyloid beta; FDG-PET, fluorodeoxyglucose-positron emission tomography;WMH,white matter hyperintensity; ICV, intra-

cranial volume; HPCV, hippocampal volume; wbrain, total brain volume; pthickness, precuneus thickness; mtthickness, medial temporal cortical thickness;

APOE, apolipoprotein E.

NOTE. Brain volumes were divided by ICV. Controlling for age at baseline, sex, education, APOE ε4 allele (at least one vs. none), and practice effects.

NOTE. N/A: Variability increased instead of decreased or had no changes, after inclusion of the predictors in the model. For instance, including these vari-

ables, goodness of fit of the model compared with the null model did not improve because they did not explain the variability of cognitive outcomes or caused

more estimation errors instead of explaining the variability.

*To capture changes in diagnosis fromMCI to AD during the follow-up, an indicator variable (before AD coded as 0, after AD coded as 1) was included as a

control variable to factor in the shift in slopes in cognitive decline among MCI.
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defined as the average of the sensitivity and the specificity,
obtained by thresholding the prediction values at zero,
whereas AUC was calculated using the trapezoid method.
Table 4 in the following lists the BAC, sensitivity, and spec-
ificity, and AUC over different follow-up durations. The
Table 3

Proportion of decline in executive function (ADNI-Exe) explained by each bioma

Biomarker

Normal group

% Variability

explained by

biomarkers

Standardized

effect size

Novel computerized marker (1 SD 5 1.4) 64.00 20.23

t-tau progression (1 SD 5 0.21) N/A —

Ab42 progression (1 SD 5 0.15) 3.40 20.10

FDG-PET progression (1 SD 5 0.19) 6.00 0.10

Log_WMH/ICV progression (1 SD 5 0.04) N/A —

HPCV/ICV progression (1 SD 5 0.08) N/A —

Ventricles/ICV progression (1 SD 5 0.13) 23.10 20.19

wbrain/ICV progression (1 SD 5 0.11) 13.10 0.04

pthickness progression (1 SD 5 0.10) 5.40 0.05

mtthickness progression (1 SD 5 0.13) 11.70 0.10

Abbreviations: ADNI-Exe, Alzheimer’s Disease Neuroimaging Initiative-execut

SD, standard deviation; t-tau, total tau; Ab, amyloid beta; FDG-PET, fluorodeoxyg

ICV, intracranial volume; HPCV, hippocampal volume; wbrain, total brain volum

thickness; APOE, apolipoprotein E.

NOTE. Brain volumes were divided by ICV. Controlling for age at baseline, se

NOTE. N/A: Variability increased instead of decreased or had no changes, after

ables, goodness of fit of the model compared with the null model did not improve

more estimation errors instead of explaining the variability.

*To capture changes in diagnosis fromMCI to AD during the follow-up, an indi

control variable to factor in the shift in slopes in cognitive decline among MCI.
AUC was comparable with previous studies using the “com-
plex iADL marker” for shorter follow-up durations [20].
Table 5 lists the hazard ratio and statistical significance of
each variable in the Cox proportional hazards model. Com-
plex iADL marker scores procession was a significant
rker progression

Among MCI* Among AD

% Variability

explained by

biomarkers

Standardized

effect size

% Variability

explained by

biomarkers

Standardized

effect size

86.30 20.35 95.70 20.42

N/A — N/A —

17.60 20.31 22.40 20.30

37.50 0.14 44.10 0.22

N/A — N/A —

14.20 0.05 N/A —

47.50 20.24 83.30 20.32

36.20 0.11 20.80 0.29

6.55 0.12 4.13 0.16

22.00 0.16 23.90 0.22

ive functioning; MCI, mild cognitive impairment; AD, Alzheimer’s disease;

lucose-positron emission tomography; WMH, white matter hyperintensity;

e; pthickness, precuneus thickness; mtthickness, medial temporal cortical

x, education, APOE ε4 allele (at least one vs. none), and practice effects.

inclusion of the predictors in the model. For instance, including these vari-

because they did not explain the variability of cognitive outcomes or caused

cator variable (before AD coded as 0, after AD coded as 1) was included as a



Table 4

Classification results for discriminating MCI-stable versus MCI-converters

and CN-stable versus CN-converters using novel computerized marker

progression at different assessments

Results

Balanced

accuracy (%)

Sensitivity

(%)

Specificity

(%) AUC n-c/n-s

MCI-converters versus MCI-stable

12 mo 87 84 87 0.87 14/47

24 mo 88 92 88 0.91 19/42

36 mo 91 93 89 0.91 22/39

48 mo 94 94 95 0.94 27/34

60 mo 93 94 93 0.94 37/24

CN-converters versus CN-stable

12 mo 89 83 91 0.85 1/70

24 mo 91 87 93 0.88 6/65

36 mo 92 85 95 0.89 9/62

48 mo 93 88 94 0.88 10/61

60 mo 96 100 94 0.95 12/59

Abbreviations:MCI, mild cognitive impairment; CN, cognitively normal;

AUC, area under receiver operating characteristic curve; n-c, number of

converters; n-s, number of stable subjects.
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hazard for conversion from bothMCI to AD, and cognitively
normal to MCI.
4. Discussion

This study was designed to investigate whether the
definition of the preclinical AD phenotype can be
improved with the addition of a “complex everyday exec-
utive function disruptions” measure through a novel com-
plex iADL marker. When examined longitudinally
together with preclinical AD biomarker progressions,
our novel marker progressions explained more variability
of declines in memory and executive functions in normal,
MCI, and AD subjects.

When interpreting these results, it is important to stress
that our analysis was based on biomarker progressions of
subjects at risk, who subsequently phenoconvert to clinical
AD, and not predefined cutoff values. Comparatively
Table 5

Hazard ratios with 95% confidence intervals for conversion fromMCI to AD, and c

proportional hazards model

End Points Hazard ratio (CI) P value

MCI to Alzheimer’s disease progression

Computerized marker 1.45 (1.20–1.93) 1.23 ! 102

Age 1.01 (0.98–1.05) .82

Education 0.99 (0.93–1.07) .61

APOE ε4 carrier 1.55 (1.03–2.39) .053

Male 0.73 (0.34–1.15) .23

Cognitively normal to MCI progression

Computerized marker 1.76 (1.32–2.34) 1.55 ! 102

Age 1.01 (0.94–1.15) .85

Education 1.02 (0.92–1.19) .71

APOE ε4 carrier 3.05 (1.19–7.89) .018*

Male 1.90 (0.85–4.99) .23

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease; CI,

NOTE. *P , .05.
exploring the two major cognitive domains investigated,
namely memory and executive functions, we produced com-
parable results to a previous study regarding the individual
biomarker progressions’ capabilities to explain cognitive de-
clines [21]. We found robust associations of both ADNI-
Mem and ADNI-Exe domain declines, for all individual
biomarker progressions of the MCI and AD groups. Our
complex iADL marker correlated with FDG-PET score
changes, ventricular volume increases, whole-brain volume
declines, and medial temporal cortical thinning progres-
sions, explaining cognitive progressions in concert with
previous research [20,37].

When examining individual biomarker progressions for
the normal subjects in our study, we found that the com-
plex iADL marker, CSF Ab42, and t-tau biomarker pro-
gression values, as well as precuneus thickness and
medial temporal cortical thinning progressions, explained
more variability in ADNI-Exe than ADNI-Mem trajectory
declines. Given the small number of data points in this
study, e.g., progression from CN-stable to MCI and MCI
to AD and the fact that we controlled for vascular brain
disease, this finding shows that certain functional or struc-
tural biomarkers change relatively late in a long disease
process. This trend was more apparent in memory de-
clines than executive functional declines. The interpreta-
tion of this finding includes the possibility that
executive dysfunction in complex activities is more com-
mon among people with AD risk alleles during the pre-
symptomatic stage, and recruitment into trials should
take such phenotypes into account. Other studies have
also observed differences in memory and executive func-
tioning during the presymptomatic stage among people
with AD risk alleles [30,38]. Such difference might be
linked to different genetic architecture and different
susceptibility to medications designed to modify the
underlying biology [39]. As our knowledge and under-
standing of these phenomena grow, we could limit enroll-
ment of subjects at risk using biomarkers in combination
ognitively normal to MCI, obtained by fitting uncorrected and corrected Cox

Corrected hazard ratio (CI) Corrected P value

5* 1.37 (1.14–1.45) .002*

0.99 (0.98–1.04) .53

0.99 (0.91–1.06) .55

1.39 (0.88–2.19) .15

0.81 (0.43–1.23) .49

5* 1.69 (1.26–2.35) .012*

1.00 (0.94–1.19) .83

1.01 (0.87–1.15) .82

2.10 (1.03–6.20) .12

1.44 (0.56–4.22) .52

confidence interval; APOE, apolipoprotein E.



Table 6

Alzheimer’s disease biomarker costs, adopted from [8].

Biomarker method Patient discomfort Risk

Est. cost per 1000

subjects, $* Additional considerations

Cerebrospinal fluid Significant Moderate

to high

350,000–1,000,000 Risks include significant headache (in 40%), back or leg pain

(in 11%), and rare meningitis, epidural abscess, or

subdural hematoma. Requisite: skill of staff performing

procedure.

Neuroimaging Mild to moderate Low

sMRI 400,000–800,000 Claustrophobia, need for lying still for long periods of time,

expensive facility and imaging equipment, specialized staff,

significant time for post hoc analysis, and variability

between facilities.

fMRI 600,000–900,000

PET 1,000,000–2,000,000

SPECT 1,000,000–2,000,000

MRS 700,000–1,000,000

Blood based Minimal Low 40,000–100,000 Possible bruising at the site of venipuncture and vasovagal

reaction.

Computerized novel

screening marker

Minimal Low 20,000–80,000y To date, there is no single, universally accepted

computerized screening system that satisfies all needs in

the detection of cognitive impairment.

Abbreviations: Est., estimated; sMRI, structural magnetic resonance imaging; fMRI, functional magnetic resonance imaging; PET, positron emission tomog-

raphy; SPECT, single-photon emission computed tomography; MRS, magnetic resonance spectroscopy.

*Cost calculations based on available online information regarding estimated individual testing charges. These are procedural charges only and do not include

the costs of assays performed using cerebrospinal fluid or blood-based analyses or the personnel charges for time spent in association with imaging or fluid-based

bioinformatic analyses.
yCost estimations per Annual Wellness Visit based on Alzheimer’s Association recommendations for operationalizing the detection of cognitive impairment

in a primary care setting [41].
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with the computerized screening marker progression,
which gives early indication of this specific subgroup
[40]. Most importantly, with the increasing pressure to
develop accurate biomarkers of preclinical AD, costs
and benefits associated with the various biosignatures
need to be considered (Table 6). Our findings provide
further evidence that a novel computerized screening
marker can be used in combination with or independent
of CSF Ab42 and hippocampal measurements to best
identify patients at risk, optimizing the costs/benefits ratio
in clinical trials [8,42,43].

This study has several strengths. To the best of our knowl-
edge, this is the first study that provided individual
biomarker and a complex iADL marker progressions pre-
dicting conversion from CN-stable to MCI and MCI to
AD. Previous attempts have focused either on overt disease
stages or a subset of biomarkers [4,38,44,45]. The follow-up
period in our study was longer than in most previous studies,
and potential differences in findings need to be interpreted
taking this into account. Finally, we used a systematic
approach to model building, and all biomarker/clinical
data were collected and processed with uniform standard
criteria to address the challenges posed by the multiplicity
of potential biomarkers of interest.

Some limitations should be taken into account. First,
although we tried to minimize the influence of vascular
pathology, we cannot rule out the possible role of sub-
clinical vascular pathology. Second, our sample size
was too small for a genome-wide search that could better
explain the differences observed. Previous studies esti-
mated required sample sizes per arm for longitudinal tri-
als among subjects with normal cognition when
examining biomarker baseline values [46,47]. Based on
those studies, enriching with FDG-PET baseline values
gives the smallest sample size of 1039 when the outcome
is a CDR-sum of boxes. Sample size for our study was
computed a priori based on similar studies in the litera-
ture [26] and in accordance to Kelley and Rausch recom-
mendations [48] to obtain sufficiently narrow confidence
intervals for the model parameters of interest.

Ultimately, as research is linking amyloid and tau pathol-
ogy as consequences of the AD, instead of the driving mech-
anism, the focus moves toward trials in presymptomatic
populations. Complex iADL impairments can be another
observable consequence, and it is particularly important
to define useful markers predictive of further cognitive de-
clines. In that context, our results provide support for two
major conclusions. First, progressions from a complex
iADL marker scores can be used to define at-risk presymp-
tomatic populations as an inexpensive low-risk solution.
Second, once a clear definition of the preclinical phenotype
is provided, the complex iADL marker progressions can
further refine the enrollment of people withMCI progressing
to AD, ensuring that those people will benefit early from
future interventions.
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RESEARCH IN CONTEXT

� Systematic review: We reviewed available English
language literature in PubMed up to June 2015 using
the term “predictive biomarker” to find studies that
examined predictors of cognitive declines at each
stage of Alzheimer’s disease (AD).

� Interpretation: The performance of our computerized
screening marker progressions is comparable with
that of more established and widely accepted bio-
markers, such as fluorodeoxyglucose-positron emis-
sion tomography score, precuneus, and medial
temporal cortical thickness progression and pre-
cuneus values. Persons at risk for AD could benefit
through the use of multiple, diverse assessment tools,
such as the computerized screening marker capable of
reliably identifying cognitive changes at the earliest
stages.

� Future directions: Initial strategic steps for integrating
computerized screening markers into future develop-
ment of diagnostic and therapy trial technologies are
(1) establish a transsectoral multidisciplinary global
network of collaborating investigators as an interna-
tional shared resource and (2) build the technological
platform for managing such a resource.
References

[1] Toyn J. What lessons can be learned from failed Alzheimer’s disease

trials? Expert Rev Clin Pharmacol 2015;8:1–3.

[2] Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC,

et al. The Alzheimer’s Disease Neuroimaging Initiative: A review of

papers published since its inception. Alzheimers Dement 2012;

8:S1–68.
[3] Insel PS, Mattsson N, Donohue MC, Mackin RS, Aisen PS,

Jack CR, et al. The transitional association between b-amyloid pa-

thology and regional brain atrophy. Alzheimers Dement 2015;

11:1171–9.

[4] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM,

et al. Toward defining the preclinical stages of Alzheimer’s disease:

Recommendations from the National Institute on Aging-Alzheimer’s

Association workgroups on diagnostic guidelines for Alzheimer’s dis-

ease. Alzheimers Dement 2011;7:280–92.

[5] Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson S, Williams S,

et al. Alzheimer’s disease biomarker discovery using SOMAscan mul-

tiplexed protein technology. Alzheimers Dement 2014;10:724–34.

[6] Prestia A, Caroli A,Wade SK, van der FlierWM,Ossenkoppele R, Van

Berckel B, et al. Prediction of AD dementia by biomarkers following

the NIA-AA and IWG diagnostic criteria in MCI patients from three

European memory clinics. Alzheimers Dement 2015;11:1191–201.

[7] Selkoe DJ. Resolving controversies on the path to Alzheimer’s thera-

peutics. Nat Med 2011;17:1060–5.

[8] Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. The critical

need for defining preclinical biomarkers in Alzheimer’s disease. Alz-

heimers Dement 2014;10:S196–212.

[9] Noel-Storr AH, Flicker L, Ritchie CW, Nguyen GH, Gupta T, Wood P,

et al. Systematic review of the body of evidence for the use of bio-

markers in the diagnosis of dementia. Alzheimers Dement 2013;

9:e96–105.

[10] Hill DL, Schwarz AJ, Isaac M, Pani L, Vamvakas S, Hemmings R,

et al. Coalition against major diseases/European Medicines Agency

biomarker qualification of hippocampal volume for enrichment of

clinical trials in predementia stages of Alzheimer’s disease. Alz-

heimers Dement 2014;10:421–4293.

[11] Brickman AM, Schupf N, Manly JJ, Stern Y, Luchsinger JA,

Provenzano FA, et al. APOE ε4 and risk for Alzheimer’s disease: Do

regionally distributed white matter hyperintensities play a role? Alz-

heimers Dement 2014;10:619–29.

[12] Prestia A, Caroli A, Herholz K, Reiman E, Chen K, Jagust WJ, et al.

Diagnostic accuracy of markers for prodromal Alzheimer’s disease

in independent clinical series. Alzheimers Dement 2013;9:677–86.

[13] Edmonds EC, Delano-Wood L, Clark LR, Jak AJ, Nation DA,

McDonald CR, et al. Susceptibility of the conventional criteria for

mild cognitive impairment to false-positive diagnostic errors. Alz-

heimers Dement 2015;11:415–24.

[14] Lehmann S, Schraen S, Quadrio I, Paquet C, Bombois S, Delaby C,

et al. Impact of harmonization of collection tubes on Alzheimer’s dis-

ease diagnosis. Alzheimers Dement 2014;10:S390–3942.

[15] Boccardi M, Bocchetta M, Ganzola R, Robitaille N, Redolfi A,

Duchesne S, et al. Operationalizing protocol differences for EADC-

ADNI manual hippocampal segmentation. Alzheimers Dement

2015;11:184–94.

[16] Frisoni GB, Jack CR. HarP: the EADC-ADNI harmonized protocol for

manual hippocampal segmentation. A standard of reference from a

global working group. Alzheimers Dement 2015;11:107–10.

[17] Young AL, Oxtoby NP, Daga P, Cash DM, FoxNC, Ourselin S, et al. A

data-driven model of biomarker changes in sporadic Alzheimer’s dis-

ease. Brain 2014;137:2564–77.

[18] Rembach A, Faux NG, Watt AD, Pertile KK, Rumble RL,

Trounson BO, et al. Changes in plasma amyloid beta in a longitudinal

study of aging and Alzheimer’s disease. Alzheimers Dement 2014;

10:53–61.

[19] Lim YY, Maruff P, Pietrzak RH, Ellis KA, Darby D, Ames D, et al. Ab

and cognitive change: Examining the preclinical and prodromal stages

of Alzheimer’s disease. Alzheimers Dement 2014;10:743–7511.

[20] Tarnanas I, Tsolaki M, Nef T, Muri R, Mosimann UP. Can a novel

computerized cognitive screening test provide additional information

for early detection of Alzheimer disease? Alzheimers Dement 2014;

10:790–8.

[21] Dodge HH, Zhu J, Harvey D, Saito N, Silbert LC, Kaye JA, et al.

Biomarker progressions explain higher variability in stage-specific

http://refhub.elsevier.com/S2352-8729(15)00084-6/sref1
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref1
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref2
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref2
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref2
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref2
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref3
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref3
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref3
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref3
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref4
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref4
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref4
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref4
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref4
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref5
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref5
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref5
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref6
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref6
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref6
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref6
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref7
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref7
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref8
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref8
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref8
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref9
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref9
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref9
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref9
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref10
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref10
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref10
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref10
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref10
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref11
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref11
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref11
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref11
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref11
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref12
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref12
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref12
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref13
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref13
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref13
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref13
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref14
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref14
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref14
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref15
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref15
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref15
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref15
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref16
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref16
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref16
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref17
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref17
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref17
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref18
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref18
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref18
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref18
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref19
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref19
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref19
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref20
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref20
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref20
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref20
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref21
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref21


I. Tarnanas et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 1 (2015) 521-532530
cognitive decline than baseline values in Alzheimer disease. Alz-

heimers Dement 2014;10:690–703.

[22] Drachman DA. The amyloid hypothesis, time to move on: Amyloid is

the downstream result, not cause, of Alzheimer’s disease. Alzheimers

Dement 2014;10:372–80.

[23] Donohue MC, Jacqmin-Gadda H, Le Goff M, Thomas RG, Raman R,

Gamst AC, et al. Estimating long-term multivariate progression from

short-term data. Alzheimers Dement 2014;10:S400–10.

[24] Kodamullil AT, Younesi E, Naz M, Bagewadi S, Hofmann-apitius M.

Computable cause-and-effect models of healthy and Alzheimer’s dis-

ease states and their mechanistic differential analysis. Alzheimers De-

ment 2015;2:1–11.

[25] Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal

volumetrics: 1. Review of methodologies currently employed. Mol

Psychiatry 2005;10:147–59.

[26] Caroli A, Prestia A, ChenK, Ayutyanont N, Landau SM,Madison CM,

et al. Summary metrics to assess Alzheimer disease-related hypometa-

bolic pattern with 18F-FDG PET: Head-to-head comparison. J Nucl

Med 2012;53:592–600.

[27] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR,

Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s dis-

ease: Recommendations from the National Institute on Aging-Alz-

heimer’s Association workgroups on diagnostic guidelines for

Alzheimer’s disease. Alzheimers Dement 2011;7:263–9.

[28] McKhann G, Drachman D, Folstein M, Katzman R, Price D,

Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of

the NINCDS-ADRDAWork Group under the auspices of Department

of Health and Human Services Task Force on Alzheimer’s Disease.

Neurology 1984;34:939–44.

[29] Dickerson BC, Wolk DA. Biomarker-based prediction of progres-

sion in MCI: Comparison of AD signature and hippocampal vol-

ume with spinal fluid amyloid-b and tau. Front Aging Neurosci

2013;5:55.

[30] Crane PK, Carle A, Gibbons LE, Insel P, Mackin RS, Gross A, et al.

Development and assessment of a composite score for memory in

the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Im-

aging Behav 2012;6:502–16.

[31] Crane PK, Narasimhalu K, Gibbons LE, Pedraza O, Mehta KM,

Tang Y, et al. Composite scores for executive function items: Demo-

graphic heterogeneity and relationships with quantitative magnetic

resonance imaging. J Int Neuropsychol Soc 2008;14:746–59.

[32] Gibbons LE, Carle AC, Mackin RS, Harvey D, Mukherjee S, Insel P,

et al. A composite score for executive functioning, validated in Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) participants with

baseline mild cognitive impairment. Brain Imaging Behav 2012;

6:517–27.

[33] Tarnanas I, Papagiannopoulos S, Kazis D, Wiederhold M,

Widerhold B, Tsolaki M. Reliability of a novel serious game using

dual-task gait profiles to early characterize aMCI. Front Aging Neuro-

sci 2015;7:50.

[34] Tarnanas I, Schlee W, Tsolaki M, M€uri R, Mosimann U, Nef T.

Ecological validity of virtual reality daily living activities screening

for early dementia: Longitudinal study. JMIR Serious Games 2013;

1:e1.
[35] Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM,

Foster NL, et al. Associations between cognitive, functional, and

FDG-PET measures of decline in AD and MCI. Neurobiol Aging

2011;32:1207–18.

[36] Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A,

Castiglioni I, et al. A standardized [18F]-FDG-PET template for

spatial normalization in statistical parametric mapping of dementia.

Neuroinformatics 2014;12:575–93.

[37] Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, €Ohrfelt A,

Andersson K, et al. Cerebrospinal fluid levels of the synaptic protein

neurogranin correlates with cognitive decline in prodromal Alz-

heimer’s disease. Alzheimers Dement 2015;11:1180–90.

[38] Silbert LC, Dodge HH, Perkins LG, Sherbakov L, Lahna D, Erten-

Lyons D, et al. Trajectory of white matter hyperintensity burden pre-

ceding mild cognitive impairment. Neurology 2012;79:741–7.

[39] Herrup K, Carrillo MC, Schenk D, Cacace A, Desanti S, Fremeau R,

et al. Beyond amyloid: Getting real about nonamyloid targets in Alz-

heimer’s disease. Alzheimers Dement 2013;9:452–4581.

[40] Malhotra A, Younesi E, Bagewadi S, Hofmann-ApitiusM. Linking hy-

pothetical knowledge patterns to disease molecular signatures for

biomarker discovery in Alzheimer’s disease. GenomeMed 2014;6:97.

[41] Cordell CB, Borson S, Boustani M, Chodosh J, Reuben D, Verghese J,

et al. Alzheimer’s Association recommendations for operationalizing

the detection of cognitive impairment during the Medicare Annual

Wellness Visit in a primary care setting. Alzheimers Dement 2013;

9:141–50.

[42] Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E,

Hampel H, et al. Designing drug trials for Alzheimer’s disease:

What we have learned from the release of the phase III antibody trials:

A report from the EU/US/CTAD Task Force. Alzheimers Dement

2013;9:438–44.

[43] Van Harten AC, Visser PJ, Pijnenburg YAL, Teunissen CE,

Blankenstein MA, Scheltens P, et al. Cerebrospinal fluid Ab42 is the

best predictor of clinical progression in patients with subjective com-

plaints. Alzheimers Dement 2013;9:481–7.

[44] Ye BS, Seo SW, Yang JJ, Kim HJ, Kim YJ, Yoon CW, et al. Com-

parison of cortical thickness in patients with early-stage versus

late-stage amnestic mild cognitive impairment. Eur J Neurol

2014;21:86–92.

[45] Lista S, Garaci FG, EwersM, Teipel S, Zetterberg H, BlennowK, et al.

CSF Ab1-42 combined with neuroimaging biomarkers in the early

detection, diagnosis and prediction of Alzheimer’s disease. Alz-

heimers Dement 2014;10:381–92.

[46] Grill JD, Di L, Lu PH, Lee C, Ringman J, Apostolova LG, et al. Esti-

mating sample sizes for predementia Alzheimer’s trials based on the

Alzheimer’s Disease Neuroimaging Initiative. Neurobiol Aging

2013;34:62–72.

[47] Leoutsakos JM, Bartlett AL, Forrester SN, Lyketsos CG. Simulating

effects of biomarker enrichment on Alzheimer’s disease prevention tri-

als: Conceptual framework and example. Alzheimers Dement 2014;

10:152–61.

[48] Kelley K, Rausch JR. Sample size planning for longitudinal models:

Accuracy in parameter estimation for polynomial change parameters.

Psychol Methods 2011;16:391–405.

http://refhub.elsevier.com/S2352-8729(15)00084-6/sref21
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref21
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref22
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref22
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref22
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref23
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref23
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref23
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref24
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref24
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref24
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref24
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref25
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref25
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref25
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref26
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref26
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref26
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref26
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref27
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref27
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref27
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref27
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref27
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref28
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref28
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref28
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref28
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref28
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref29
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref29
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref29
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref29
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref30
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref30
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref30
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref30
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref31
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref31
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref31
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref31
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref32
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref32
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref32
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref32
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref32
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref33
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref33
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref33
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref33
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref34
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref34
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref34
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref34
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref34
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref35
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref35
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref35
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref35
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref36
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref36
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref36
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref36
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref37
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref37
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref37
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref37
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref37
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref38
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref38
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref38
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref39
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref39
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref39
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref40
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref40
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref40
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref41
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref41
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref41
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref41
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref41
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref42
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref42
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref42
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref42
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref42
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref43
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref43
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref43
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref43
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref44
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref44
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref44
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref44
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref45
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref45
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref45
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref45
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref46
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref46
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref46
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref46
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref47
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref47
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref47
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref47
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref48
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref48
http://refhub.elsevier.com/S2352-8729(15)00084-6/sref48


Appendix

DOT and NAV marker tasks

The complex iADL marker used in this study consisted
of two modules simulating complex activities of daily
living (CADL): the three-dimensional (3D) immersive
reality day-out task (DOT) and the 3D immersive reality
spatial navigation only task (NAV). The DOT was a com-
plex task breakdown followed by a rehearsal exercise of a
virtual apartment building fire evacuation drill. The drill
included six different scenarios of increasing difficulty,
where participants navigated the virtual environment us-
ing a first-person perspective and simple hand pointing
gestures for forward, backward, and left, and right lateral
movement, respectively. They could also use natural
finger pointing and grabbing gestures to select, pick,
drop, and move objects inside the virtual environment
and had to complete each within 8 minutes. All partici-
pant movement within the virtual building was recorded
at 10 Hz and represented as a series of x, y, z coordinates,
with actions annotated and time stamped.

The DOT naturalistic actions script was based on an or-
dered list of right and wrong actions that was prepared by
an occupational psychologist and was used to examine ex-
ecutive function and prospective memory as well as plan-
ning and reasoning in a complex emergency routine. The
fire evacuation drill setting had six different simulated fire
situations (from easy to more difficult) taking place at a
virtual apartment block with three levels and five apart-
ments per level. The task put a medium-to-high load on
the cognitive control processes with which older adults
prioritize, organize, initiate, and complete a number of
subroutines (e.g., pick-up the phone and call the fire
department, sound the fire-alarm) to evacuate safely and
in the fastest possible way from an apartment level (e.g.,
second floor) to the ground area (e.g., determine and
gather information on the size of the fire, avoid smoke,
avoid wrong actions such as using the elevator). In this
sense, DOT is a CADL, which previous research showed
is a valid and reliable indicator of cognitive decline in
elderly persons [20].

The NAV task took place at the same virtual apartment
block but with the player challenged in different aspects
of executive function, such as volition, self-awareness,
planning, inhibition of dominant response, external
distraction during response control, and dual-task coordi-
nation [33]. The goal at difficulty level 1 was to navigate
from point A to point B, after the route was demonstrated
by a first-person perspective camera walk through without
iteration. The NAV task took place with six levels of dif-
ficulty, with the addition of one more point of destination
per difficulty level—for example, level 3 has three points
to reach, level 4 has four, and so forth. Each level had a
starting position (start) and an end position (goal) and
multiple ways to arrive from start to goal. Participants

were asked to make their way from start to goal in the
shortest time possible.

Both tasks took place at the same virtual reality enriched
environment and placed a medium-to-high demand on
higher-order cognitive control processes. One of the cogni-
tive control processes with the highest demand was to follow
a mental strategy to reach a goal in parallel with behavioral
performance monitoring while inhibiting environmental
stressors—for example, virtual distractors requiring the
player to count stimuli while walking, a process that typi-
cally involves high cognitive control. Scoring was computed
for both DOTand NAVand has been described before [34]. It
basically consists of a quantitative ratio of efficacy that is
computed by an algorithm that follows four activity param-
eters in real-time: (1) omission of one of the activities, (2)
repetition of the same activity, (3) incorrect order in per-
forming the activities, and (4) number of attempts before
completing a given activity. In addition to the quantitative
score mentioned previously, we also get a graphical repre-
sentation, which illustrates the length of time participants
spent at each specific set of x, y, z coordinates in the 3D
space. Fig. 1 shows a graphical example of mean group
completion performance at DOT.

The order of participating in either the DOT or NAV
tasks was random, and both started after each participant
had 5 minutes to read written instructions detailing the
task, virtual building layout, and task rules. Then, partic-
ipants practiced the virtual environment using gestures to
move around the building and completed three practice
runs involving object collection, button pressing, unlock-
ing the stairwell door with a key code, and folder sorting.
This also allowed participants to familiarize themselves
with the building. None of the practice runs were used
in the main task. The practice session took in total approx-
imately 20 minutes.

Participants in this study played all difficulty levels of
DOT and NAV in a baseline session (visit 1) and then at
the end of the 12-, 24-, 36-, 48-, or 60-month follow-up.
To standardize performance during different difficulty
levels of the DOT and NAV tasks, we used an algorithm
that detects subtle changes in intra-individual variability,
which we validated previously [33]. This algorithm reflects
a transient, within-person change in behavioral perfor-
mance, and more particularly, latency (variability across
response time performance scores) and accuracy based
(variability across accuracy scores—correct vs. wrong re-
sponses) and has been reportedly associated with early
functional and cognitive decline [20,33,34].

Fluorodeoxyglucose-positron emission tomography
metrics and analysis

Alzheimer’s disease (AD)–related hypometabolism was
computed with the pre-defined regions of interest (MetaROIs)
average [35] using theSPM815O-H2OPET template [36]. For
each fluorodeoxyglucose-positron emission tomography
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(FDG-PET) image, we computed metaROI average as the
average of the mean counts in five metaROI volumes on
spatially and intensity-normalized PET images. All volume
metrics were based on voxel-by-voxel analysis based on a
meta-analysis of studies [26] carrying out direct whole-brain
contrasts of FDG-PET data (summary variable by averaged
mean for left and right temporal, right, and left angular and pos-
terior cingulate cortices) and reporting Z-scores or T-values in
voxels, showing significantly different mean FDG uptake be-
tween patients (AD or mild cognitive impairment [MCI]) and
controls at each time point.

Statistical analysis

To examine the amount, magnitude, and timing of prac-
tice effects, we used a piecewise approach to observe
changes in cognitive slopes. For example, because the
normative magnitude and precise timing of when practice
effects subside are not established, we allowed slope
changes between baseline and 6-month assessment, be-
tween 6-month assessment and 12-month follow-up assess-
ment, and so on. This analysis indicated that the
Alzheimer’s Disease Neuroimaging Initiative-memory
function model fitness is best if we assume that the practice
effect peaked at the 6-month assessment, and for executive
function (ADNI-Exe) at the 12-month assessment, similar
to the recent work [21]. We included this change point in

the model to control for practice effects. In addition, the
variability in cognitive decline (i.e., individual differences
in slopes explained by the subject-specific baseline
biomarker progressions) was compared with variability in
our novel computerized screening market progressions.
All biomarker variables were standardized so that esti-
mated effects on cognitive decline could be meaningfully
compared across different biomarkers and our novel
computerized screening marker. Standardization was
done using baseline means and standard deviations, and
each model included time in months (0, 6, 12, 18, 24, and
36 months from baseline). Each brain volume was divided
by intracranial volume (ICV), and white matter hyperinten-
sity/ICV was first normalized due to common skewed dis-
tribution with a log transformation.

Finally, we applied the same mixed-effects models to
each stage separately for normal cognition, MCI, and
AD. We examined the predictive effect of progressions
on cognitive declines within each group, with intercept
and time treated as random effects in all models. Changes
in diagnoses in the MCI group from MCI to AD were
indicated using a variable. All models used restricted
maximum likelihood for estimation and assumed an un-
structured within-subject error covariance structure. To
examine the overall fit of the models, we used (1) formal
fit criteria and (2) residual plots inspected visually. All
results were considered significant at P , .05.

Fig. 1. The graphical representation which illustrates the mean group completion performance profiles of the complex iADL (DOT) from a tablet PC while the

users were navigating in 3D space. (A) This is themean completion time values for theMCI and AD groupswhile the user was interacting with the different tasks

during the complex iADL. (B) This is the mean completion time values for the normal and MCI groups while the user was interacting with the different tasks

during the complex iADL, and (C) this is an actual screenshot of DOT, where the user is required to perform fire safety skills and emergency evacuation in the

presence of a room fire. A time countdown at the upper left corner is providing gamification and extra pressure for the completion of the task. Abbreviations:

iADL, instrumental activities of daily living; DOT, day-out task; 3D, three dimensional; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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